Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Respir Care ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594036

RESUMEN

Background: The use of the prone position (PP) has been widespread during the COVID-19 pandemic. While it has demonstrated benefits, including improved oxygenation and lung aeration, the factors influencing the response in terms of gas exchange to PP remain unclear. In particular, the association between baseline quantitative Computed Tomography (qCT) scan results and gas exchange response to PP in intubated, mechanically ventilated subjects with COVID-19 ARDS is unknown. The present study aimed to compare baseline qCT results between subjects responding to PP in terms of oxygenation or carbon dioxide (CO2) clearance and those who did not.Methods: This was a single-center, retrospective observational study, including critically ill, intubated, mechanically ventilated subjects with COVID-19 related acute respiratory distress syndrome admitted to the ICUs of Niguarda Hospital between March 2020 and November 2021. Blood-gas samples were collected before and after PP. Subjects in whom the PaO2/FiO2 increase was ≥ 20 mmHg after PP were defined as Oxygen responders (Oxy-R). CO2-responders (CO2R) were defined when the ventilatory ratio (VR) decreased during PP. Automated qCT analyses were performed to obtain tissue mass and density of the lungs.Results: One hundred twenty-five subjects were enrolled, of which 116 (93%) were Oxy-R and 51 (41%) CO2R. No difference in qCT characteristics and oxygen were observed between Oxy-R and Oxygen Non Responders (Tissue mass 1532 ±396 vs. 1654 ±304 g, p= .28; density -544±109 vs. -562±58 HU, p= .42). Similar findings were observed when dividing the population according to CO2 response (Tissue mass 1551±412 vs. 1534±377 g, p= .89; density -545±123 vs. -546±94 HU, p= .99).Conclusions: Most COVID-19 related ARDS subjects improve their oxygenation at the first pronation cycle. The study suggests that baseline qCT scan data are not associated with the response to PP in oxygenation or CO2 in mechanically ventilated COVID-19 related ARDS subjects.

2.
J Appl Physiol (1985) ; 136(4): 966-976, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420681

RESUMEN

It is commonly assumed that changes in plasma strong ion difference (SID) result in equal changes in whole blood base excess (BE). However, at varying pH, albumin ionic-binding and transerythrocyte shifts alter the SID of plasma without affecting that of whole blood (SIDwb), i.e., the BE. We hypothesize that, during acidosis, 1) an expected plasma SID (SIDexp) reflecting electrolytes redistribution can be predicted from albumin and hemoglobin's charges, and 2) only deviations in SID from SIDexp reflect changes in SIDwb, and therefore, BE. We equilibrated whole blood of 18 healthy subjects (albumin = 4.8 ± 0.2 g/dL, hemoglobin = 14.2 ± 0.9 g/dL), 18 septic patients with hypoalbuminemia and anemia (albumin = 3.1 ± 0.5 g/dL, hemoglobin = 10.4 ± 0.8 g/dL), and 10 healthy subjects after in vitro-induced isolated anemia (albumin = 5.0 ± 0.2 g/dL, hemoglobin = 7.0 ± 0.9 g/dL) with varying CO2 concentrations (2-20%). Plasma SID increased by 12.7 ± 2.1, 9.3 ± 1.7, and 7.8 ± 1.6 mEq/L, respectively (P < 0.01) and its agreement (bias[limits of agreement]) with SIDexp was strong: 0.5[-1.9; 2.8], 0.9[-0.9; 2.6], and 0.3[-1.4; 2.1] mEq/L, respectively. Separately, we added 7.5 or 15 mEq/L of lactic or hydrochloric acid to whole blood of 10 healthy subjects obtaining BE of -6.6 ± 1.7, -13.4 ± 2.2, -6.8 ± 1.8, and -13.6 ± 2.1 mEq/L, respectively. The agreement between ΔBE and ΔSID was weak (2.6[-1.1; 6.3] mEq/L), worsening with varying CO2 (2-20%): 6.3[-2.7; 15.2] mEq/L. Conversely, ΔSIDwb (the deviation of SID from SIDexp) agreed strongly with ΔBE at both constant and varying CO2: -0.1[-2.0; 1.7], and -0.5[-2.4; 1.5] mEq/L, respectively. We conclude that BE reflects only changes in plasma SID that are not expected from electrolytes redistribution, the latter being predictable from albumin and hemoglobin's charges.NEW & NOTEWORTHY This paper challenges the assumed equivalence between changes in plasma strong ion difference (SID) and whole blood base excess (BE) during in vitro acidosis. We highlight that redistribution of strong ions, in the form of albumin ionic-binding and transerythrocyte shifts, alters SID without affecting BE. We demonstrate that these expected SID alterations are predictable from albumin and hemoglobin's charges, or from the noncarbonic whole blood buffer value, allowing a better interpretation of SID and BE during in vitro acidosis.


Asunto(s)
Desequilibrio Ácido-Base , Acidosis , Anemia , Humanos , Equilibrio Ácido-Base , Concentración de Iones de Hidrógeno , Dióxido de Carbono , Electrólitos , Hemoglobinas , Albúminas/efectos adversos
7.
Anesthesiology ; 140(1): 116-125, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37616330

RESUMEN

BACKGROUND: Several studies explored the interdependence between Paco2 and bicarbonate during respiratory acid-base derangements. The authors aimed to reframe the bicarbonate adaptation to respiratory disorders according to the physical-chemical approach, hypothesizing that (1) bicarbonate concentration during respiratory derangements is associated with strong ion difference; and (2) during acute respiratory disorders, strong ion difference changes are not associated with standard base excess. METHODS: This is an individual participant data meta-analysis from multiple canine and human experiments published up to April 29, 2021. Studies testing the effect of acute or chronic respiratory derangements and reporting the variations of Paco2, bicarbonate, and electrolytes were analyzed. Strong ion difference and standard base excess were calculated. RESULTS: Eleven studies were included. Paco2 ranged between 21 and 142 mmHg, while bicarbonate and strong ion difference ranged between 12.3 and 43.8 mM, and 32.6 and 60.0 mEq/l, respectively. Bicarbonate changes were linearly associated with the strong ion difference variation in acute and chronic respiratory derangement (ß-coefficient, 1.2; 95% CI, 1.2 to 1.3; P < 0.001). In the acute setting, sodium variations justified approximately 80% of strong ion difference change, while a similar percentage of chloride variation was responsible for chronic adaptations. In the acute setting, strong ion difference variation was not associated with standard base excess changes (ß-coefficient, -0.02; 95% CI, -0.11 to 0.07; P = 0.719), while a positive linear association was present in chronic studies (ß-coefficient, 1.04; 95% CI, 0.84 to 1.24; P < 0.001). CONCLUSIONS: The bicarbonate adaptation that follows primary respiratory alterations is associated with variations of strong ion difference. In the acute phase, the variation in strong ion difference is mainly due to sodium variations and is not paralleled by modifications of standard base excess. In the chronic setting, strong ion difference changes are due to chloride variations and are mirrored by standard base excess.


Asunto(s)
Equilibrio Ácido-Base , Bicarbonatos , Humanos , Animales , Perros , Cloruros/farmacología , Sodio/farmacología , Concentración de Iones de Hidrógeno
10.
Blood Purif ; 52(9-10): 802-811, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37673054

RESUMEN

INTRODUCTION: Metformin intoxication causes lactic acidosis by inhibiting Krebs' cycle and oxidative phosphorylation. Continuous renal replacement therapy (CRRT) is recommended for metformin removal in critically ill patients. According to current guidelines, regional citrate anticoagulation (RCA) is the first-line strategy. However, since metformin also inhibits citrate metabolism, a risk of citrate accumulation could be hypothesized. In the present study, we monitored the potential citrate accumulation in metformin-associated lactic acidosis (MALA) patients treated with CRRT and RCA using the physical-chemical approach to acid-base interpretation. METHODS: We collected a case series of 3 patients with MALA. Patients were treated with continuous venovenous hemofiltration (CVVH), and RCA was performed with diluted citrate solution. Citrate accumulation was monitored through two methods: the ratio between total and ionized plasma calcium concentrations (T/I calcium ratio) above 2.5 and the strong ion gap (SIG) to identify an increased concentration of unmeasured anions. Lastly, a mathematical model was developed to estimate the expected citrate accumulation during CVVH and RCA. RESULTS: All 3 patients showed a resolution of MALA after the treatment with CVVH. The T/I calcium ratio was consistently below 2.5, and SIG decreased, reaching values lower than 6 mEq/L after 48 h of CVVH treatment. According to the mathematical model, the estimated SIG without citrate metabolism should have been around 21 mEq/L due to citrate accumulation. CONCLUSIONS: In our clinical management, no signs of citrate accumulation were recorded in MALA patients during treatment with CVVH and RCA. Our data support the safe use of diluted citrate to perform RCA during metformin intoxication.


Asunto(s)
Acidosis Láctica , Terapia de Reemplazo Renal Continuo , Hemofiltración , Humanos , Ácido Cítrico/uso terapéutico , Calcio/farmacología , Citrato de Calcio , Anticoagulantes/uso terapéutico , Acidosis Láctica/inducido químicamente , Hemofiltración/efectos adversos , Citratos/efectos adversos , Terapia de Reemplazo Renal
12.
J Clin Med ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373608

RESUMEN

BACKGROUND: Changing trunk inclination affects lung function in patients with ARDS. However, its impacts on PEEP titration remain unknown. The primary aim of this study was to assess, in mechanically ventilated patients with COVID-19 ARDS, the effects of trunk inclination on PEEP titration. The secondary aim was to compare respiratory mechanics and gas exchange in the semi-recumbent (40° head-of-the-bed) and supine-flat (0°) positions following PEEP titration. METHODS: Twelve patients were positioned both at 40° and 0° trunk inclination (randomized order). The PEEP associated with the best compromise between overdistension and collapse guided by Electrical Impedance Tomography (PEEPEIT) was set. After 30 min of controlled mechanical ventilation, data regarding respiratory mechanics, gas exchange, and EIT parameters were collected. The same procedure was repeated for the other trunk inclination. RESULTS: PEEPEIT was lower in the semi-recumbent than in the supine-flat position (8 ± 2 vs. 13 ± 2 cmH2O, p < 0.001). A semi-recumbent position with optimized PEEP resulted in higher PaO2:FiO2 (141 ± 46 vs. 196 ± 99, p = 0.02) and a lower global inhomogeneity index (46 ± 10 vs. 53 ± 11, p = 0.008). After 30 min of observation, a loss of aeration (measured by EIT) was observed only in the supine-flat position (-153 ± 162 vs. 27 ± 203 mL, p = 0.007). CONCLUSIONS: A semi-recumbent position is associated with lower PEEPEIT and results in better oxygenation, less derecruitment, and more homogenous ventilation compared to the supine-flat position.

15.
Intensive Crit Care Nurs ; 74: 103344, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36357234

RESUMEN

OBJECTIVE: To assess the different effect of filters' application during helmet-CPAP delivered with three different flow generators on the delivered fresh gas flow, FiO2, and the noise level inside and outside the helmet. METHODS: In a bench study, three flow generators (air-oxygen blender, turbine ventilator and Venturi system) were used to generate two different gas flows (60 L/min and 80 L/min), with a fixed FiO2 at 0.6, to perform a helmet-CPAP on a manikin. Three different fixed PEEP valves (7.5, 10, and 12.5 cmH2O) were applied at the expiratory port. Gas flow, FiO2 and noise were recorded for each Flow-generator/Flow/PEEP combination, first without filter interposition and then after positioning a heat and moister exchanger filter (HMEF) at the helmet inlet port. RESULTS: The application of the HMEF lead to a significant difference in the flow variation among the three flow generators (p < 0.001). Compared to baseline, the highest flow reduction was observed with the VENTURI (-13.4 ± 1.2 %, p < 0.001), a slight increase with the BLENDER (1.2 ± 0.5 %, p < 0.001), whereas no difference was recorded with the TURBINE (0.1 ± 0.6 %, p = 0.12). After HMEF was interposed, a significant FiO2 variation was observed only with VENTURI (11.3 ± 1.8 %, p < 0.001). As for the noise, the TURBINE was the least noisy system, both with and without the filter interposition. CONCLUSIONS: Flow generators used to deliver helmet-CPAP have different characteristics and responses to HMEF interposition. Users should be aware of the effects on FiO2 and flow of the different devices in order to make a precise setup of the circuit.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Ruido , Humanos
16.
Front Physiol ; 13: 1009378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338486

RESUMEN

Non-carbonic buffer power (ßNC) of blood is a pivotal concept in acid-base physiology as it is employed in several acid-base evaluation techniques, including the Davenport nomogram and the Van Slyke equation used for Base excess estimation in blood. So far, ßNC has been assumed to be independent of metabolic acid-base status of blood, despite theoretical rationale for the contrary. In the current study, we used CO2 tonometry to assess ßNC in blood samples from 10 healthy volunteers, simultaneously analyzing the electrolyte shifts across the red blood cell membrane as these shifts translate the action of intracellular non-carbonic buffers to plasma. The ßNC of the blood was re-evaluated after experimental induction of metabolic acidosis obtained by adding a moderate or high amount of either hydrochloric or lactic acid to the samples. Moreover, the impact of ßNC and pCO2 on the Base excess of blood was examined. In the control samples, ßNC was 28.0 ± 2.5 mmol/L. In contrast to the traditional assumptions, our data showed that ßNC rose by 0.36 mmol/L for each 1 mEq/l reduction in plasma strong ion difference (p < 0.0001) and was independent of the acid used. This could serve as a protective mechanism that increases the resilience of blood to the combination of metabolic and respiratory acidosis. Sodium and chloride were the only electrolytes whose plasma concentration changed relevantly during CO2 titration. Although no significant difference was found between the electrolyte shifts in the two types of acidosis, we observed a slightly higher rate of chloride change in hyperchloremic acidosis, while the variation of sodium was more pronounced in lactic acidosis. Lastly, we found that the rise of ßNC in metabolic acidosis did not induce a clinically relevant bias in the calculation of Base excess of blood and confirmed that the Base excess of blood was little affected by a wide range of pCO2.

17.
Br J Anaesth ; 129(5): 726-733, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096944

RESUMEN

BACKGROUND: Acid-base status in full-term pregnant women is characterised by hypocapnic alkalosis. Whether this respiratory alkalosis is primary or consequent to changes in CSF electrolytes is not clear. METHODS: We enrolled third-trimester pregnant women (pregnant group) and healthy, non-pregnant women of childbearing age (controls) undergoing spinal anaesthesia for Caesarean delivery and elective surgery, respectively. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide ( [Formula: see text] ), and pH were measured in simultaneously collected CSF and arterial blood samples. RESULTS: All pregnant women (20) were hypocapnic, whilst only four (30%) of the controls (13) had an arterial [Formula: see text] <4.7 kPa (P<0.001). The incidence of hypocapnic alkalosis was higher in the pregnant group (65% vs 8%; P=0.001). The CSF-to-plasma Pco2 difference was significantly higher in pregnant women (1.5 [0.3] vs 1.0 [0.4] kPa; P<0.001), mainly because of a decrease in arterial Pco2 (3.9 [0.3] vs 4.9 [0.5] kPa; P<0.001). Similarly, the CSF-to-plasma difference in SID was less negative in pregnant women (-7.8 [1.4] vs -11.4 [2.3] mM; P<0.001), mainly because of a decreased arterial SID (31.5 [1.2] vs 36.1 [1.9] mM; P<0.001). The major determinant of the reduced plasma SID of pregnant women was a relative increase in plasma chloride compared with sodium. CONCLUSIONS: Primary hypocapnic alkalosis characterises third-trimester pregnant women leading to chronic acid-base adaptations of CSF and plasma. The compensatory SID reduction, mainly sustained by an increase in chloride concentration, is more pronounced in plasma than in CSF, as the decrease in Pco2 is more marked in this compartment. CLINICAL TRIAL REGISTRATION: NCT03496311.


Asunto(s)
Alcalosis , Femenino , Humanos , Embarazo , Equilibrio Ácido-Base , Bicarbonatos , Dióxido de Carbono , Cloruros , Electrólitos , Concentración de Iones de Hidrógeno , Tercer Trimestre del Embarazo , Sodio
18.
Front Med (Lausanne) ; 9: 870372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463012

RESUMEN

Background: Advances in regional anesthesia and pain management led to the advent of ultrasound-guided fascial plane blocks, which represent a new and promising route for the administration of local anesthetics. Both practical and theoretical knowledge of locoregional anesthesia are therefore becoming fundamental, requiring specific training programs for residents. Simulation-based medical education and training (SBET) has been recently applied to ultrasound-guided regional anesthesia (UGRA) with remarkable results. With this in mind, the anesthesia and intensive care residency program of the University of Milano-Bicocca organized a 4-h regional anesthesia training workshop with the BlockSim® (Accurate Srl, Cesena) simulator. Our study aimed to measure the residents' improvement in terms of reduction in time required to achieve an erector spinae plane (ESP) block. Methods: Fifty-two first-year anesthesia residents were exposed to a 4-h training workshop focused on peripheral blocks. The course included an introductory theoretical session held by a locoregional anesthetist expert, a practical training on human models and mannequins using Onvision® (B. Braun, Milano) technologies, and two test performances on the BlockSim simulator. Residents were asked to perform two ESP blocks on the BlockSim: the first without previous practice on the simulator, the second at the end of the course. Trainees were also also asked to complete a self-assessment questionnaire. Results: The time needed to achieve the block during the second attempt was significantly shorter (131 [83, 198] vs. 68 [27, 91] s, p < 0.001). We also observed a reduction in the number of needle insertions from 3 [2, 7] to 2 [1, 4] (p = 0.002), and an improvement aiming correctly at the ESP from 30 (58%) to 46 (88%) (p < 0.001). Forty-nine (94%) of the residents reported to have improved their regional anesthesia knowledge, 38 (73%) perceived an improvement in their technical skills and 46 (88%) of the trainees declared to be "satisfied/very satisfied" with the course. Conclusions: A 4-h hands-on course based on SBET may enhance first-year residents' UGRA ability, decrease the number of punctures and time needed to perform the ESP block, and improve the correct aim of the fascia.

19.
Respir Care ; 67(8): 995-1001, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35232821

RESUMEN

BACKGROUND: When helmet CPAP is performed using a Venturi system, filters are frequently interposed in the respiratory circuit to reduce noise within the helmet. The effect of the interposition of these filters on delivered fresh gas flow and the resulting FIO2 is currently unknown. METHODS: In a bench study, 2 different Venturi systems (WhisperFlow and Harol) were used to generate 3 different gas flow/FIO2 combinations (80 L/min-FIO2 0.6, 100 L/min-FIO2 0.5, 120 L/min-FIO2 0.4). Different combinations of filters were applied at the flow generator input line and/or at the helmet inlet port. Two types of filters were used for this purpose: a heat and moisture exchanger filter and an electrostatic filter. The setup without filters was used as baseline. Gas flow and FIO2 were measured for each setup. RESULTS: Compared to baseline, the interposition of filters reduced the gas flow between 1-13% (P < .001). The application of a filter at the Venturi system or at the helmet generated a comparable flow reduction (-3 ± 2% vs -4 ± 2%, P = .12), whereas a greater flow reduction (-7 ± 4%) was observed when filters were applied at both sites (P < .001). An increase in FIO2 up to 5% was observed with filters applied. A strong inverse linear relationship (P < .001) was observed between the resulting gas flow and FIO2 . CONCLUSIONS: The use of filters during helmet CPAP reduced the flow delivered to the helmet and, consequently, modified FIO2 . If filters are applied, an adequate gas flow should be administered to guarantee a constant CPAP during the entire respiratory cycle and avoid rebreathing. Moreover, it might be important to measure the effective FIO2 delivered to the patient to guarantee a precise assessment of oxygenation.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Ruido , Presión de las Vías Aéreas Positiva Contínua/métodos , Calor , Humanos
20.
Neurocrit Care ; 37(1): 102-110, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35199305

RESUMEN

BACKGROUND: Hyperventilation resulting in hypocapnic alkalosis (HA) is frequently encountered in spontaneously breathing patients with acute cerebrovascular conditions. The underlying mechanisms of this respiratory response have not been fully elucidated. The present study describes, applying the physical-chemical approach, the acid-base characteristics of cerebrospinal fluid (CSF) and arterial plasma of spontaneously breathing patients with aneurismal subarachnoid hemorrhage (SAH) and compares these results with those of control patients. Moreover, it investigates the pathophysiologic mechanisms leading to HA in SAH. METHODS: Patients with SAH admitted to the neurological intensive care unit and patients (American Society of Anesthesiologists physical status of 1 and 2) undergoing elective surgery under spinal anesthesia were enrolled. CSF and arterial samples were collected simultaneously. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide (PCO2), weak noncarbonic acids (ATOT), and pH were measured in CSF and arterial blood samples. RESULTS: Twenty spontaneously breathing patients with SAH and 25 controls were enrolled. The CSF of patients with SAH, as compared with controls, was characterized by a lower SID (23.1 ± 2.3 vs. 26.5 ± 1.4 mmol/L, p < 0.001) and PCO2 (40 ± 4 vs. 46 ± 3 mm Hg, p < 0.001), whereas no differences in ATOT (1.2 ± 0.5 vs. 1.2 ± 0.2 mmol/L, p = 0.95) and pH (7.34 ± 0.06 vs. 7.35 ± 0.02, p = 0.69) were observed. The reduced CSF SID was mainly caused by a higher lactate concentration (3.3 ± 1.3 vs. 1.4 ± 0.2 mmol/L, p < 0.001). A linear association (r = 0.71, p < 0.001) was found between CSF SID and arterial PCO2. A higher proportion of patients with SAH were characterized by arterial HA, as compared with controls (40 vs. 4%, p = 0.003). A reduced CSF-to-plasma difference in PCO2 was observed in nonhyperventilating patients with SAH (0.4 ± 3.8 vs. 7.8 ± 3.7 mm Hg, p < 0.001). CONCLUSIONS: Patients with SAH have a reduction of CSF SID due to an increased lactate concentration. The resulting localized acidifying effect is compensated by CSF hypocapnia, yielding normal CSF pH values and resulting in a higher incidence of arterial HA.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Equilibrio Ácido-Base , Lactatos/líquido cefalorraquídeo , Presión Parcial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...